semantic_compare¶
- record_evaluation(result_df, query_id, result, message)¶
Updates the result DataFrame with the evaluation outcome.
- Parameters:
result_df (pandas.DataFrame) – DataFrame containing query results.
query_id (str) – Identifier of the query being evaluated.
result (str) – The evaluation result (“TRUE”, “FALSE”, or “UNDETERMINED”).
message (str) – A message explaining the evaluation result.
- Returns:
The updated result DataFrame.
- Return type:
pandas.DataFrame
- compare_gold_to_generated(gold, generated, database_name, db_type='ms-sql', db_list_file='./local/db_info.json')¶
Compares gold standard and generated SQL queries for semantic equivalence.
- Parameters:
gold (str) – The gold standard SQL query.
generated (str) – The generated SQL query.
database_name (str) – The name of the database to query.
db_type (str, optional) – The type of the database (“ms-sql”, “sqlite”, or “tsql”).
db_list_file (str, optional) – Path to the database connection information JSON file.
- Returns:
A dictionary containing the equivalence result and reason.
- Return type:
dict
- do_batch_compare(database_name, result_file)¶
Performs a batch comparison of generated SQL queries against gold standards.
- Parameters:
database_name (str) – The name of the database to query.
result_file (str) – Path to the Excel file containing queries and results.