.. _semantic_compare: semantic_compare ================ .. py:function:: record_evaluation(result_df, query_id, result, message) Updates the result DataFrame with the evaluation outcome. :param result_df: DataFrame containing query results. :type result_df: pandas.DataFrame :param query_id: Identifier of the query being evaluated. :type query_id: str :param result: The evaluation result ("TRUE", "FALSE", or "UNDETERMINED"). :type result: str :param message: A message explaining the evaluation result. :type message: str :return: The updated result DataFrame. :rtype: pandas.DataFrame .. py:function:: compare_gold_to_generated(gold, generated, database_name, db_type="ms-sql", db_list_file="./local/db_info.json") Compares gold standard and generated SQL queries for semantic equivalence. :param gold: The gold standard SQL query. :type gold: str :param generated: The generated SQL query. :type generated: str :param database_name: The name of the database to query. :type database_name: str :param db_type: The type of the database ("ms-sql", "sqlite", or "tsql"). :type db_type: str, optional :param db_list_file: Path to the database connection information JSON file. :type db_list_file: str, optional :return: A dictionary containing the equivalence result and reason. :rtype: dict .. py:function:: do_batch_compare(database_name, result_file) Performs a batch comparison of generated SQL queries against gold standards. :param database_name: The name of the database to query. :type database_name: str :param result_file: Path to the Excel file containing queries and results. :type result_file: str .. toctree:: :maxdepth: 2 :caption: Contents: